If it's not what You are looking for type in the equation solver your own equation and let us solve it.
12y+y^2=180
We move all terms to the left:
12y+y^2-(180)=0
a = 1; b = 12; c = -180;
Δ = b2-4ac
Δ = 122-4·1·(-180)
Δ = 864
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{864}=\sqrt{144*6}=\sqrt{144}*\sqrt{6}=12\sqrt{6}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(12)-12\sqrt{6}}{2*1}=\frac{-12-12\sqrt{6}}{2} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(12)+12\sqrt{6}}{2*1}=\frac{-12+12\sqrt{6}}{2} $
| 4+x-6+4+x-6=60 | | (5-u)(3u-2)=0 | | 6(3x-1)=7+4x | | 1-(2x+3)=x-4 | | 2y^2-16y+50=0 | | 9(a–8)=-54 | | 5z-5/7z=3 | | 20=8x=4 | | 3x^2+13=12x | | 5(2+u)=-35 | | (2x+11)+(3x-40)=180 | | 7=-3/5t+17 | | x-5=15. | | p2-2p+1=0 | | a2+3a-10=0 | | 45+1.50x=3.00x | | -31-4x=-5-5(5x+1) | | 40=5x-5x | | (x^2)-8x+25=0 | | (x(-8)+11)=0 | | 4x=48+4 | | 2/7=1/7z | | 2/7=-1/7v | | 7m-7=5m+10 | | 2=4/q | | t+2/3=1 | | 2.1/1.4=y/6 | | Y=0.8x-3.2 | | 9-(2z-5)=2-3z | | p-1/3=2 | | (x(-8))+11=0 | | .001x(4-x)=0 |